ANALYSIS OF LIGHT TRAP CATCHES OF LEPIDOPTERA FROM PALMERSTON NORTH, NEW ZEALAND IN 1966–68

By D. E. GASKIN, Department of Zoology, University of Guelph, Guelph, Ontario, Canada

(Received for publication, 17 February 1970)

Summary

A total of 130,655 specimens of Lepidoptera were taken using a 125 watt MV bulb trap at Palmerston North between 1 October 1966 and 30 September 1968. These were identified as belonging to a total of 222 species; 1 each of Pieridae, Lycaenidae, Hypsidae, Sphingidae, Psychidae, Thyrididae, Elachistidae, Glyphipterygidae, and Coleophoridae, 43 Noctuidae, 61 Geometridae, 52 Pyralidae, 18 Tortricidae, 16 Oecophoridae, 4 Stathmopodidae, 3 Yponomeutidae, 3 Lyonetidae, 2 Tineidae and 6 Hepialidae. While 190 species were taken in 1966–67, only 144 were taken in 1967–68. The fall in catches is largely attributed to additional extraneous illumination reducing trap efficiency in the second season. Factors affecting light trap efficiency are briefly discussed.

Melanchra grandiosa Philp. and Melanchra inchoata Philp. are recorded for the first time from the North Island.

INTRODUCTION

A light trap was operated continuously at night for Lepidoptera at Massey University Biology Building just south of Palmerston North, New Zealand, from 1 October 1966 to 30 September 1968. The trap was switched on about 1 hour before sunset and off again 1 to 3 hours after dawn. The bulb was a 125 watt mercury vapour, replaced every 4 months.

The trap was situated $4\frac{1}{2}$ ft above ground level, with a 170° field of visibility from northeast southeast. The trap was cleared by the author or one of his assistants from 1 to 3 hours after dawn, but no significant escape of insects from the trap was noted during daylight hours, other than of *Pseudaletia separata*. On the four occasions the author stayed with the trap until about midnight no insects were seen to escape. After an hour or so of operation the base of the bulb holder and the steel cone around the bulb became very hot; this was seen to deter insects trying to crawl up to the bulb again after flying into the body of the trap.

The trap faced one of the university orchards, but was separated from it at a distance of about 100 yards by two rows of trees at right angles, mostly *Eucalyptus and Cupressus macrocarpa*. At a distance of 10 miles the bush-covered crest of the northern Tararua Range was visible between and above these trees. The Tiritea Stream, a small tributary of the Manawatu River, passed the trap out of sight and about $\frac{1}{2}$ mile to the north-

N.Z. Jl Sci. 13: 482-499

east. To the north, on the other side of the stream, and out of line of sight, was the native bush of Bledisloe Park. A number of small patches of waste ground within about 100 yards of the trap totalled perhaps $\frac{1}{2}$ acre in extent. To the southwest the view from the trap was dominated by a series of fallow or pasture fields rising to a ridge about $\frac{1}{2}$ mile away, with a few rows of conifers, mostly *Pinus* species, standing between the fields. An experimental plot of rough grasses, including a stand of *Cortaderia*, was also just visible from the trap.

Much of the lepidopterous fauna of New Zealand remains unrevised, but revisions have been incorporated where possible. The New Zealand tomato fruit worm should now be refered to as *Helicoverpa armigera conferta* (Walker, (Hardwick, 1965). Wise (1965) gave some corrections to the names of New Zealand butterflies, one of which is relevant here. Mr J. S. Dugdale is revising the tortricine fauna, and part of this work has been published (Dugdale, 1966a, 1966b). However, valid names are not yet available for the "*Cnephasia*" species *incessana* Walker and *jactatana* Walker. The re-definition of tribal characters of the Cnephasiini by Obraztsov (1955) excludes these species (Dugdale, 1966b).

Dumbleton (1966) revised the New Zealand Hepialidae; with one exception his names are used. However I do not recognise here *Wiseana despecta* (Walker), as in my own unpublished work on *Wiseana cervinata* (Walker) and *W. despecta* I found no significant morphological differences between spring flight *cervinata* and late summer specimens traditionally attributed to *despecta* (Helson, 1966). Helson figured data showing separate flight peaks for *cervinata* and *despecta* at a number of localities in both main islands; however I think these figures are open to different interpretation, and certainly the trapping results from Palmerston North (species 220) show no trace of two peaks, even though the period in which hepialids of this species were taken completely overlaps the time scale shown by Helson for North Island localities.

I have recently revised the New Zealand Crambinae, but it is not possible to incorporate new names and combinations in this paper, since this would result in prepublication difficulties. However it is worth mentioning that *Crambus* Fabricius is a Holarctic genus not found in Australia or New Zealand, and that *Diptychophora* Zeller is restricted to Central and South America.

Where I was in doubt of the correct identification of a species during this study I either checked the specimens against the Dominion Museum collection, or referred them to Mr J. S. Dugdale for an opinion. I am very grateful to him for his help, and to Mr R. G. Ordish for allowing me to make use of the museum collection. Much assistance with day to day servicing of the trap was given by Messrs D. J. Greenwood, M. Mannering,

[SEPTEMBER

P. Campbell and P. J. Wigley all formerly of the Department of Zoology, Massey University. Special thanks are due to Mr G. E. Gale of the University of Guelph, Ontario, for his work in converting many of the data from day cards to condensed tabular form.

Collections were actually made by weeks, but it is not possible to publish results in this form. Workers interested in detailed breakdowns of catches for any species are invited to write direct to the author.

DISCUSSION

To the best of my knowledge the records of *Melanchra grandiosa* Philp. and *Melanchra inchoata* Philp. are the first-published records for the North Island. *M. inchoata* was described from Stephens Island specimens (Hudson, 1928), and *M. grandiosa* does not seem previously to have been recorded north of a line from Milford Sound to Timaru.

There are obvious qualitative and quantitative differences between the catch results for the two seasons; however the significance of these is very questionable. Tables 2-4 show that a total of 190 species were collected in 1966-67, and only 144 species in 1967-68. No less than 161 species were either not taken in the second season, or were recorded in smaller numbers than in 1966–67. The totals in Tables 2 and 3 include a small number of abberrant records; a few specimens of three diurnal species were recorded, although these are not formally included in Table 1; one specimen of Pieris rapae Linn. (Pieridae) in March 1968; two specimen of Zizeeria otis labradus (Godt.) (Lycaenidae) in March 1967 and March 1968; and two specimens of Nyctemera annulata (Boisd.) (Hypsidae) in December 1966 and March 1968. Variation cut across families, subfamilies, and groups from the major ecological divisions to be found in the area. For example; great catch reductions were noted for the grassland Crambus cyclopicus, the arboreal Selidosema suavis, the herb-feeders Melanchra mutans and Melanchra insignis, the grass/herb feeder Witlesia sabulosella and the aquatic-semiaquatic Nymphula nitens. Conversely the catch of the moss-feeding Scoparia diphtheralis increased by over 100% in 1967-68, and there were also increases in the 1967-68 catches of the horticultural-agricultural pests Plusia chalcites, Helicoverpa armigera conferta and Wiseana cervinata. Within broad limits catches of the arboreal Selidosema leucelaea and the grass-feeding Crambus flexuosellus and Crambus vittellus remained roughly constant in the two seasons.

In this study it can probably be assumed fairly safely that the sampling effort of the trap was very similar over the two seasons; bulb intensity was not changed, nor the position of the trap. Thus factors such as moth escape after daybreak (Belton & Kempster, 1963), are likely to be equal in both seasons, if acting upon the catch. The question must be asked if

RESULTS

GASKIN – LEPIDOPTERA

TABLE 1—Light trap records of Lepidoptera taken at Massey University, 1966-67 and 1967-68

Species	Season	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Family Sphingidae														
1. Herse convolvuli (Linn.)	67–68						1							1
Family SATURNIIDAE														
2. Antheraea eucalypti (Scd.)	66–67 67–68	2 1	5 2	2 52	13 13	$\frac{1}{1}$				_				23 70
Family PSYCHIDAE														
3. Oeceticus omnivorus (Fer.)	66–67 67–68	2 7	1 2	3			1							6 10
Family NOCTUIDAE														
 Agrotis innominata Huds. Agrotis munda (Walk.) Agrotis ypsilon (Rott.) Aletia moderata (Walk.) 	66–67 66–67 67–68 66–67 67–68	1 7 4 2	 	$\frac{1}{5}$	11 45 2	$ \begin{array}{c} - \\ 13 \\ 32 \\ 2 \\ 3 \end{array} $	42 57 2	87 9 1	2 89 	2			2 2 2	2 1 254 155 13 3
8. Ariathisa comma (Walk.)	66–67 67–68				3 1									1
9. Austramathes purpurea (Butl.) 10. Bityla defigurata (Walk.)	66–67 66–67 67–68	_	1		. Î	1	1	 1		·				1 3 1
11. Cosmodes elegans (Don.) 12. Dasypodia selenophora Gn. 13. Erana graminosa Walk.	66–67 67–68 66–67	4	6	<u> </u>		$\frac{1}{6}$	 55	$\frac{1}{13}$		2		3	2	1 1 97
14. Graphiphora compta Walk.	67–68 66–67	2	3 4			1 4	1 5	$\frac{13}{2}$	$1 \\ 14 \\ 7$		_	 1	$\frac{2}{1}$	6 34
15. Helicoverpa armigera conferta (Walk.)	67–68 66–67 67–68	1	4	1	1 17 1	 24 64	19 64	5 19		-	_	_	_	9 70 149

TABLE 1—continued

Species	Season	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total	•
16. Hypenodes costistrigalis Steph.	66–67 67–68	4		1	2	1	11	1		1				21	
17. Leucania purdii Fer.	66–67 67–68			_			1							1	
18. Leucania semivittata Walk.	66–67 67–68	1	3		1	32	$\frac{1}{3}$	·					_	6	
19. Leucania sulcana Fer.	66-67			_			1							1	Z
20. Melanchra alcyone Huds.	66–67 67–68	9 11		2	1					2	3	2	3	22 12	New
21. Melanchra coeleno Huds.	66–67 67–68	4				_								4 5	ZEA
22. Melanchra decorata Philp.	66-67	3					-		1			-		4	AL A
23. Melanchra diatmeta Huds.	66–67 66–67	. 1		1	1									2	ŇD
24. <i>Melanchra exquisita</i> Philp. 25. <i>Melanchra grandiosa</i> Philp.	66–67 66–67 67–68									1				1	-
26. Melanchra inchoata Philp.	67–68			1	3	3								7	Journa
27. Melanchra infensa (Walk.)	6667 6768	1	1 4	1	2						<u> </u>			4	NAI
28. Melanchra insignis (Walk.)	66–67 67–68	119 33	30 1	12	14	17 18	15 8	5	1	7	14	17	14	265 63	OF
29. Melanchra lignana (Walk.)	66–67 67–68	32 7	62 1	1 3	1	3	39 7	15	4	î	1	3		162 21	Science
30. Melanchra morosa (Butl.)	66-67						2	-		-				2	EN
31. Melanchra mutans (Walk.)	6667 6768	1134 213	199 73	119 25	252 93	549 233	421 69	452 102	474 8	100 8	97 2	162 50	125 74	084 4950	CE
32. Melanchra ochthistis Meyr.	66–67 67–68	1		2	1			2			1	1		8	
33. Melanchra omoplaca (Meyr.)	66–67 67–68		23	9 2	5			_						16	
34. Melanchra paracausta (Meyr.)	6667 6768	2	11 2											13 2	[Sep]
35. Melanchra plena (Walk.)	66–67 67–68	3			1		-	1	1	1	4	1	2	14	TEMBER
36. Melanchra praesignis (Howes)	66–67			1								1		2	3ER

486

37. Melanchra prionistis (Meyr.)	66–67 67–68	2	2					1	_					3	197
38. Melanchra stipata (Walk.)	66–67 67–68	1		1	-	1	1	1						4	[970]
39. Melanchra ustistriga (Walk.)	66–67 67–68	118 34	22 13	30 15	40 15	31 28	19 15	27 7	17	11 10	28 5	67 6	28 9	438 162	
40. Persectania arotis (Meyr.)	66–67 67–68	16 6	6			<u>-</u> 2	1		_		_		_	23	
41. Persectania atristriga (Walk.)	66–67 67–68				1	10 54	9 11	2						22 68	
42. Persectania aversa (Walk.)	66–67 67–68	318 149	82 50	10 20	31 47	134 193	357 107	86 49	159 7	12 8	15 7	18 8	84 12	1306 657	
 43. Persectania steropastis (Meyr.) 44. Plusia chalcites Esp. 	66–67 66–67 67–68	4		2	3 4	1 16 39	2 24 111	40 101	$\frac{1}{30}$	4		<u> </u>		12 118 261	G
45. Pseudaletia separata Walk.	66–67 67–68	7			6	16 4	70 26	98 57	159 10	38 2	$\frac{1}{3}$		1	396 102	Gaskin
46. Rhapsa scotosialis Walk.	67–68 66–67 67–68	1	1	1	. 2		20 	<u> </u>	<u> </u>	1 1				102 6 1	Z I
Family Geometridae															ĹEI
Subfamily LAURENTIINAE															Ð
47. Asaphodes megaspilata (Walk.)	66–67 67–68	11 2	7 2	4 1	2	1	1	1	1		1		1	39 6	EPIDOPTERA
48. Asthena pulchraria (Dbld.)	66–67 67–68	4 1	2	3 1	2 1	3 2	1	1		1	_	1		17 7	ERA
49. Asthena subpurpureata (Walk.)	66–67 67–68	14 4	1	10 1	14 1	4 1	41	2	 1	·			_	96 9	
50. Chloroclystis aristias Meyr.	66-67				1							-		1	
51. Chloroclystis dryas (Meyr.)	6667											1		1	
52. Chloroclystis lichenodes (Purd.)	66-67			2										2	
53. Chloroclystis lunata Philp.	67–68 66–67			1		-	1			1				$\frac{1}{2}$	
54. Chloroclystis nuscosata (Walk.)	66-67			1						1				1	
55. Chloroclystis paralodes Meyr.	66-67	1				1	1	2		1		-	And the second second	6	
	67–68					2	1							3	•
56. Chloroclystis sandycias Meyr.	67–68			-		1	-			1			—	2	
57. Chloroclystis semialbata (Walk.)	66-67	3							_					3	48
58. Chloroclystis sphragitis (Meyr.)	66–67					1								1	

487

TABLE 1—continued

			IA	DLE I	-comm	иси									88
Species	Season	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total	^o
59. Elvia glaucata Walk.	66–67			1			3	1			1	1		7	
60. Epiphryne undosata (Feld.)	66-67	2	1		1	1								5	
61. Epiphryne verriculata (Feld.)	66-67	2		4	2			1	1			1	1	12	
	67-68	1		1	_	1						2		5	
62. Euchoeca rubropunctaria (Dbld.)	66-67							2						2	
63. Eucymatoge anguligera (Dutl.)	66-67						1							1	
64. Eucymatoge gobiata (Feld.)	66-67			1			2	-					-	3	
65. Hydriomena deltoidata (Walk.)	6768		1											1	New
66. Hydriomena rixata (Feld.)	66-67						1							1	لي ا
67. Hydriomena similata (Walk.)	66-67				1	1	1						1	4	R
	67-68						2	1	-		1	1		5	N
68. Hvdriomena subochraria (Dbld.)	6667				1									1	Zealand
69. <i>Microdes epicryptis</i> Meyr.	6667					3								3	Ľ
······································	67-68					2								2	₽ Z
70. Orthoclydon praefectata (Walk.)	67-68		1				-							1	Ð
71. Phrissogonus laticostatus (Walk.)	66-67						1	3	2	1	1			8	فسو
(it unit)	6768					3	14	18	_					35	g
72. Phrissogonus testulatus (Gn.)	66-67	17	2	3	9	13	20	17	7	1	5	1	2	97	R
12. 1 missogonus restautus (Gil.)	67–68	2	ĩ	ĭ	ź	10	- ³			î			ĩ	21	Z
73. Tatosoma lestevata (Walk.)	67–68		î	<u> </u>	·									- Î	Journal
74. <i>Tatosoma tipulata</i> (Walk.)	67-68		î	1										2	
75. Tatosoma topia Philp.	66–67	1		1			to and the second						1	3	OF
75. Tutosoma topia Timp.	67-68			1			1						-	1	\mathbf{v}
76. Xanthorhoe aegrota (Butl.)	66-67	1	2	3	1	3		1			1			12	CIENCE
10. Xuninornoe degrota (Bull.)	67–68	T	1	5	1	5		T			T	2	1	4	野
77. Xanthorhoe cinerearid (Dbld.)	66-67	8	L	3	10	2	4	5	1	1	1	2	2	37	ð
11. Xuninomoe cinereuria (Dold.)	67–68	11		5	10	1	4	5	1	T	T		4	12	E
79 Vanishankan allanni data (Maria)	66-67	11		1	2	1								12	
78. Xanthorhoe chlamydota (Meyr.)		1		1	2	1	1	3	1					4	
79. Xanthorhoe lucidata (Walk.)	66-67		P-000-7	2		1	-	3	1				1	2	
$(\mathbf{D}_{1}) = (\mathbf{D}_{1})$	67–68			84	47	1	70	42	13	10	10		1	41^{2}	<u> </u>
80. Xanthorhoe rosearia (Dbld.)	66-67	60	22		47	42	72	43		10	10	5	4	412 58	SE
	67–68	3	8	5	3	13 23	11	5	4	1	3	1	1	201	P
81. Xanthorhoe semisignata (Walk.)	66-67	38	6	6	7		83	31		1			6		[September
	67-68	31	1	4	16	55	14	5		-			1	143	M
82. Xanthorhoe venipunctata (Walk.)	66–67	1	2	5	3		16	7	. 1	1.5		3	1	40	BE
	67–68		1	1	1	1	8	1	1	<u> </u>		3	1	18	R

Subfamily OENOCHROMATINAE 84. Epirrhanthis alectoraria (Walk.) 66–67 1 - 1 - 1 1 -	Subfamily STERRHINAE 83. Leptomeris rubraria (Dbld.)	66–67 67–68				2 3	5 24	13 114	7 68	1					28 209	1970]
87. Azelina fortinata (Gn.) 66-67 $ -$	84. Epirrhanthis alectoraria (Walk.)85. Epirrhanthis ustaria (Walk.)	66–67 67–68 66–67		2	1 2 3 1	1	3 2 1				 2		 1		27 6 11	
(1)	 87. Azelina fortinata (Gn.) 88. Azelina galleria (Walk.) 89. Azelina variabilis (Warr.) 90. Declana atronivea (Walk.) 91. Declana floccosa Walk. 92. Declana leptomera (Walk.) 93. Declana niveata Butl. 94. Gargaphia muriferata Walk. 95. 'Selidosema' dejectaria (Walk.) 96. Selidosema fenerata (Feld.) 97. Selidosema lactiflua Meyr. 99. Selidosema leucelaea Meyr. 100. Selidosema' panagrata (Walk.) 101. 'Selidosema' pannularia Gn. 102. Selidosema pelurgata (Walk.) 	$\begin{array}{c} 66-67\\ 66-67\\ 67-68\\ 66-67\\ 67-68\\ 66-67\\ 67-68\\ 66-67\\ 67-68\\ 66-67\\ 67-68\\ 66-67\\ 67-68\\ 66-67\\ 67-68\\ 66-67\\ 67-68\\ 66-67\\ 67-68\\ 66-67\\ 67-68\\ 66-67\\ 67-68\\ 66-67\\ 67-68\\ 66-67\\ 66$	27 3 30 21 59 53	4 2 1 1 1 2 6 7 1	4 1 2 	$ \begin{array}{c} 7 \\ 1 \\ 2 \\ - \\ 1 \\ - \\ 1 \\ - \\ 1 \\ - \\ 19 \end{array} $	4 30 	8 22	7 — 3 27 13 15 — 23 10	 19 1 1 1 19 6	$ \begin{array}{c}$	$ \begin{array}{c} 1 \\ 1 \\ - \\ 2 \\ - \\ 2 \\ - \\ - \\ 5 \\ \end{array} $	$ \begin{array}{c} 1 \\ 3 \\ \\ \\ 1 \\ \\ \\ \\ \\ 366 \\ 3 \\ \\ \\ 366 \\ 3 \end{array} $	2 	2 211 105 8 2 3 2 11 8 158 78 21 4 3 281 208 10 4	I

Science 11

			T	able 1-	-contin	ued									490
Species	Season	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total	00
105. Selidosema suavis (Butl.)	66–67 67–68	62 3	13 3	26 4	8 2	8 5	29 1	27	63	10 1	7 1	3	14 7	213 34	
106. Sestra flexata (Walk.) 107. Sestra humararia (Walk.)	66–67 66–67						1							54 1 1	
Family Pyralidae Subfamily Crambinae															
108. 'Crambus' angustipennis (Zell.)	66–67 67–68			1	1	1	1							2 2	New
109. 'Crambus' apicellus Zell.	66–67 67–68	3 2	7 5	53	4 1	· 2 4	7 4	1						29 19	
110. 'Crambus' cyclopicus Meyr.	66–67 67–68			_		2	101 12	190 64	12 14				_	305 90	JEAL
111. 'Crambus' enchophorus Meyr.	66–67 67–68		_			1	23 16	20 13	2					90 46 32	ZEALAND
112. 'Crambus' flexuosellus Dbld.	66-67	710 1696	5220 5614	7625 2590	1578 294		20502 28400	9329 4350	669 581	15 31	2			48259 52752	
113. 'Crambas' ramosellus Dbld.	66–67 67–68	1090 10 14	26 31	2390 72 18	294 20 18	2	28400 31 47	4330 33 42	3	1	1			197 179	Journal
114. 'Crambus' vittellus Dbld.	6667 6768		$\frac{31}{2}$	- 18	227 197	$620 \\ 733$	134 86	23						1001 1026	
115. 'Crambus' vulgaris Butl.	66–67 67–68	_	_	_			12 4	_				_		1020	OF S
116. 'Diptychophora' auriscriptella (Walk.)	67–68		1	1										2	Science
117. 'Diptychophora' elaina Meyr.	66–67 67–68	3 6	$\frac{1}{2}$	3 1			1					~	_	9 10	ICE
118. 'Diptychophora' harmonica Meyr. 119. 'Diptychophora' pyrsophanes Meyr.	66–67 67–68		$\frac{3}{1}$	1										1	
120. Gadira acerella Walk.	66–67 67–68		- - 1		1									1	
121. 'Velasquez' pentadactyla Zell.	66–67 67–68						2 1							1 2 1	SEP
Subfamily SCOPARIINAE 122. Scoparia aspidota (Meyr.)	66–67 67–68	_	1	1	_2									1 2 2	[September

123.	Scoparia cataxesta Meyr.	66–67 67–68				2	1	3				 ,	_		4 5	1970]	
124	Scoparia chimeria Meyr.	66-67	1				1							_	1	70	
	Scoparia colpota Meyr.	66-67		-	1	-									1		
	Scoparia crypsinoa Meyr.	66-67	3	23	3		8	1	1						39		
		67-68	9		-			6							15		
127.	Scoparia dinodes Meyr.	66-67		1								-			1		
	Scoparia diphtheralis Walk.	66-67			13	50	87	43	7	2					202		
	·····	67-68		4	19	53	235	110							421		
129	Scoparia feredayi Knaggs	66-67		1	1			2	2		-			1	7		
		67-68		_	1			1							2		
130.	Scoparia indistinctalis (Walk.)	66-67					9	4	13	18					44		
	·····,	67-68					2		3	3	Party states				8		
131.	Scoparia meliturga Meyr.	67–68	1												1	~	
	Scoparia minualis Meyr.	66-67		1		1		-							2	ĘΣ	
	Scoparia minusculalis Walk.	66-67		1					1	3	-				5	S	
	1	67-68		1		1	1								3	Gaskin	
134.	Scoparia octophora Meyr.	66–67	-		. 1	2	. 2	_							5	Z	
		67-68		1	1			-				-			2	1	
135.	Scoparia periphanes Meyr.	67–68		1	1										2	Ľ	
	Scoparia petrina (Meyr.)	66-67	8	2	2	3	-	1	8	3	6	4	3	1	41	EP	
		67-68	6	4	1		—		3						14	LEPIDOPTERA	
	Scoparia phalerias Meyr.	66-67	1											-	1	Q	
138.	Scoparia philerga Meyr.	66–67	16	14	8	4	4	3	3	2					54	Ĕ	
		67–68	24	11	1		1								37	Ę	
139.	Scoparia rotuella (Feld.)	67–68		1											1	A	
140.	Scoparia steropaea Meyr.	66–67	1	2				-			·	-			3		
		67–68		2		<u> </u>					-				2		
	Scoparia submarginalis (Walk.)	66–67			2	1									3		
142	Scoparia trivirgata (Feld.)	67–68		-		1							-		1		
	Scoparia ustimacula Feld.	6667		1		3									4		
144.	Scoparia ustiramis Huds.	66-67	4			1		4	2						11		
		67–68	1		1							-	-		2		
145.	Witlesia sabulosella (Walk.)	66-67	3	2	48	62	14	3	1						133		
		67–68	6	1	12	8	4								31		
	Subfamily NYMPHULINAE																
14-	-			•											1070	_	
146	Nymphula nitens (Butl.)	66–67	1	3	795	167	47	54	12						1079	491	
		67–68	7	205	119	74	23	10							438	شر	

				TA	ble 1	contini	ued								× ,	492
	Species	Season	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total	2
	Subfamily PYRAUSTINAE								-	-			-	_		
	Diasemia grammalis Dbld.	66-67				5	5								10	
	Mecyna diaclealis (Walk.)	66–67	24		·7	1.4		1	1						2	
149.	Mecyna flavidalis (Dbld.)	66–67 67–68	34 6	2 5	3	14 5	3 19	24 7	24 4	2 1	1 2	1 1	4	4	120 58	
150.	Mecyna maorialis (Feld.)	66-67	3	2	1	1	8	2	1	1		1	1	4	18	
		67–68	2	1	1	2	24	10	ĩ						41	<u> </u>
	Musotima nitidalis (Walk.)	66-67					1					-		1	2	Z
152.	. Nesarcha hybrealis (Walk.)	66–67 67–68	1	1	1 1	2 1	1 3	1	1			<u> </u>	2	5	13 7	New
153.	Proternia philocapna Meyr.	66-67		1	1	1	2								3	
	Sceliodes cordalis (Dbld.)	6667		1	2	4	ī	-							8	EAI
		67–68		1	1	1	1								4	Zealand
	Subfamily Pyralinae															AD 20
155.	Fauna aegalis (Walk.)	66–67	2	4	5	1						-			12	
150		67–68	7	7	1	1	1								17	ğ
156.	Pyralis farinalis Linn.	67–68				1			1						2	RN
	Subfamily PHYCITINAE															JOURNAL
157.	Crocydophora cinigerella (Walk.)	66-67	19	1	23	5	3	25	3	1	1	1	4	2	88	OF
1.50		6768	52	4	3	2	21	8	2				3	1	96	Ň
	Ephestia kuehniella Zell. Homoeosoma farinaria Turn.	66–67 66–67	101	7	7	31		-					3	4	3	CIE
159.	nomoeosoma jarmaria 1 am.	67-68	30	í		6	3							4	150 40	SCIENCE
	Family Pterophoridae	0, 00		-		Ű,	2				•				40	H
160	Alucita monospilalis (Walk.)	66–67		1	1	1	2	3	1						0	
	Platyptilia aeolodes Meyr.	66-67	1			2			4						9 7	
	Platyptilia falcatalis Walk.	6667				Ĩ		2		3			1		ź	
163.	Platyptilia furcatalis (Walk.)	66-67					2					-			2	SE
		67–68			-		1	1							2	ΞPT
	Family Thyrididae															EN
164.	Morova subfasciata Walk.	66-67			2	2					······ ·				4	[September
		67–68	-			2	1								3	R

166. Sp	Family TORTRICIDAE Subfamily EUCOSMINAE ydia pomonella (Linn.) pilonota ejactana (Walk.) pilonota sp. (n.sp.?)	66–67 66–67 66–67 67–68	 16	42	5	1	$\frac{2}{5}$ 32	 1 19	$\frac{-}{28}$	 6 7	1				1 4 91 63	1970]
168 'C	Subfamily TORTRICINAE Capua' semiferana (Walk.)	66–67	12	2	10	5	11	8	15	4	1	2	1	1	72	
		67-68	12	2 4	9	3	7	8	7	1	1	2 3	1	4	50	
169. ' <i>C</i>	Catamacta' gavisana Walk.	66–67 67–68		2		1			—	—					1	
170. °C	Inephasia' incessana (Walk.)	67–68 67–68		$\frac{2}{2}$		1	_								2	
	Inephasia' jactatana (Walk.)	6667	1									<u>.</u>		1	2	G
172. Ct	tenopseutis obliquana (Walk.)	66–67 67–68	35 30	18 4	11 7	33 16	129 58	55 13	61 11	38 1	9 3	4 1	1	-	394 145	Gaskin
173 Di	<i>ipterina imbriferana</i> Meyr.	66-67	1	4		10	4	15	<u> </u>			1			6	- Ki
	piphyas postvittana (Walk.)	66-67	î	10	1	16	6	5	13	5	6	3	1	1	68	2
	1 3 1	67-68	8	2	1	7	2	2	7	1	1				31	÷.
175. M	lerophyas leucaniana (Walk.)	66–67 67–68	6 3	2	1	1	2	1	7					2	20 5	LEPIDOPTERA
176. Pl	anotortrix charactana (Meyr.)	67–68 66–67			_				_			1	1		2	Đ
		67-68			1	-	-					î			2	OP
	lanotortrix conditana (Walk.)	66-67			-						· —		2		2	TE
	anotortrix excessana (Walk.)	66-67		1		1	2	-	1		<u> </u>				5	RA
179. <i>Pl</i>	lanotortrix notophaea Turner	66-67			4	4	4	2	1	1			1		17	,
180 P	yrgotis eudorana Meyr.	6768 6667			2 2	2	1	3	1	1	·		1		5 10	
100.1)	yrgons eudorunu Mey1.	67–68	_		3					1					3	
181. Pv	yrgotis plinthoglypta Meyr.	66-67			ĭ										ĭ	
	Fortrix' flavescens (Butl.)	66-67		-	_	1									1	
	Family Occophoridae															
183. Bc	area confusella Walk.	66–67		-	1	2	5								8	
181 D.	orkhausenia chlorodelpha Meyr.	67–68 66 a 67		1	19	1	2				معيتم				2 21	
104. DU	orknausenia chioroaeipna Meyr.	67-68	1	31	7	1									21 39	4
185. Ba	orkhausenia pseudospretella (Stt.)	66–67				1	2								3	493

TABLE	1—continued
-------	-------------

				10		comm	иси									94
	Species	Season	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total	4
186.	Cryptolechia liochroa (Meyr.)	66–67 67–68		1		2									23	
	Gymnobathra flavidella (Walk.)	66–67 66–67	1		-	1					—				1	
	Gymnobathra hyetodes Meyr. Gymnobathra parca (Butl.)	66-67		2	1	8	1		_	_					12	
	Izatha attactella Walk.	67–68 66–67		3	1	1						_			5 1	
191.	Izatha balanophora (Meyr.)	66–67 67–68			1 1	$\frac{2}{8}$	1 1								4 10	New
192.	Izatha epiphanes (Meyr.)	66–67 67–68	-	_		ĩ	1	1		-		—			2	
193.	Izatha peroneanella (Walk.)	66–67 67–68	_	1	1	2	1		_				_		$\frac{2}{3}$	Zealand
	Leptocroca scholaea (Meyr.)	66-67		î											1	ND
	Nymphostola galactina (Feld.)	66–67 67–68		1	1	1		3							5	-
	Paracystola acroxantha (Meyr.) Proteodes profunda Meyr.	66–67 67–68	2	1	2	2	1	2	_						10	Journa
	Trachypepla festiva Philp.	66–67	1	1	1				-	-	—	—	—		3	NAI
	Family Stathmopodidae															OF
	Batrachedra arenosella (Walk.)	66-67			1	1	5	3	1				—		11	
	Stathmopoda phlegyra Meyr. Stathmopoda skelloni (Butl.)	66–67 66–67		1		4	2								63	Science
	Vanicela disjunctella Walk.	67–68		1	2							*******			3	CE
	Family Elachistidae															
203.	Elachista archaeonoma Meyr.	66–67		3	2			—				—			5	
	Family YPONOMEUTIDAE															[Se
204.	Orthenches virgata Philp.	66-67		1 6	7 1	2 4	1 2	2 1	17 9	22 10	1	2			55	PTE
	Plutella maculipennis Curt.	67–68 66–67	1			4 1		1	у —	10	• 1	1	3		33 8	SEPTEMBER
206.	Protosynaema steropucha Meyr.	66–67		3	2	1									6	R

Family GLYPHIPTERYGIDAE	66–67						1	1						2	1970]
207. Porpe bjerkandrella Thun.	00-07						1	1						2	[0]
Family COLEOPHORIDAE															
 208. Coleophora spissicornis Haw. & Coleophora frischella L. (not distinguished) 	66–67 67–68		4	6	14 75	44 1069	42 47	5			-			105 1201	
209. Hectacma stilbella (Dbld.)	66–67				1									1	
210. Opogona comptella Walk. 211. Opogona omoscopa (Meyr.)	66–67 66–67 67–68	4	9 14	34 28	193 74	47 15	4 52 6	$\frac{3}{12}$	1 7					4 339 160	
Family Tineidae															Ga
212. Monopis ethelella (New.)213. Sagephora phortegella Meyr.	66–67 66–67				1		1 2	3 1	2	<u>`1</u>		1		7 5	Gaskin
Monotrysia-Family Hepialidae Subfamily Hepialinae															- Lepie
214. Aenetus virescens (Dbld.)	66–67 67–68	1 2			_	3							1 2	2 7	Lepidoptera
Subfamily OXYCANINAE															RA
215. Cladoxycanus minos (Huds.)	66–67 67–68									6				6	
216. Trioxycanus enysii (Butl.) 217. Wiseana cervinata (Walk.)	67–68 66–67 67–68		1152 600	1 287 180		56	10						43	1 2918 3793	
218. Wiseana signata (Walk.)	66–67			1	3 4 7	7	2						2	14	
219. Wiseana umbraculata (Gn.)	67–68 66–67 67–68	22 2	76 43	2 11 10	3	18 	3							30 112 55	
· ·															495
	<u></u>														Ň

SEPTEMBER

5	I														
	Pieridae	Lycaenidae	Hypsidae	Sphingidae	Saturnidae	Psychidae	Noctuidae	Geometridae	Pyralidae	Pterophoridae	Thyrididae	Tortricidae	Oecophoridae etc. (spp. 183-213)	Hepialidae	Total
Taken in both seasons		1	1		1	1	30	29	32	1	1	9	11	5	122
Taken in 1966-1967 only						transformed and	11	25	13	3		8	18		78
Taken in 1967-1968 only	1			1			2	7	7			1	2	1	22
Total	1	1	1	1	1	1	43	61	52	4	1	18	31	6	222

TABLE 2-Summary of Numbers of Species taken in Seasons 1966-67, 1967-68

 TABLE 3—Summary of Numbers of Specimens (all species) taken in Seasons 1966–67, 1967–68

Family	1966–67	1967–68
Pieridae		1
Lycaenidae	1	1
Hypsidae	1	1
Sphingidae		1
Saturnidae	23	70
Psychidae	6	10
Noctuidae	7,440	2,680
Geometridae	2,027	1,014
Pyralidae	51,933	55,371
Pterophoridae	25	2
Thyrididae	4	3
Tortricidae	697	309
Oecophoridae etc. (spp. 183–213)	632	1,465
Hepialidae	3,052	3,886
Total	65,841	64,814

	Sphingidae	Saturnidae	Psychidae	Noctuidae	Geometridae	Pyralidae	Pterophoridae	Thyrididae	Tortricidae	Oecophoridae etc. (spp. 183–213)	Hepialidae	Total
No. of species in which same no. of specimens of specimens were recorded in both seasons				2		3	1		1	1		8
Species more frequently recorded in 1966–67		_		33	49	34	3	1	15	23	2	160
Species more frequently recorded in 1967–68	1	1	1	8	12	15			2	7	4	51
Total	1	1	1	43	61	52	4	1	18	31	6	219

 TABLE 4—Comparative Abundance of Species in the Light Trap Catches;

 1966–67 relative to 1967–68

changes in climatic conditions between the two seasons made animals less vulnerable to trapping by this method in the second season, or even if conditions in the winter of 1967 could have resulted in smaller populations flying in the second season. An analysis of detailed weather records is currently being carried out, but at this stage it seems unlikely that any significant factors will be unearthed.

There is a possibility, which cannot be confirmed, that the trap itself made a significant contribution to mortality. However since the use of light traps for insect control appears to have been very largely unsuccessful (Stanley & Dominick 1957; Williams *et al.*, 1955), this can probably be discounted. In this particular case it is possible to point to certain ecological disturbances in the campus area which could have resulted in lower catches in the second season. The nearest field to the trap was ploughed in in the autumn of 1967; weeds and herbage were cleared from the orchard perimeter in the winter of 1967, and progress on the university ring road resulted in a sizeable part of the mixed exotic and native bush along the Tiritea being felled.

In my opinion the most important single change in the environment in the vicinity of the trap that could act to reduce catches was the addition of street lighting on the road past the Biology Building to the orchards. The detailed study by Verheijen (1960) on the factors influencing light trap operation indicated that any change in the contrast between the trap and the area around it was certain to result in reduced efficiency. One lamp standard stood only 50 yards from the trap to one side, and from any point in the vicinity that the trap light was visible, the standard would be too.

The results underline the serious drawbacks which are inherent in light trapping as a means of making estimates of even relative population numbers. My examination of crambine catches from the Department of Agriculture trap at Winchmore (unpublished) showed that Crambus "simplex" (actually an undescribed species) was taken commonly by the black light trap, but not by the mercury vapour trap. Studies by Glick et al. (1956) indicated that slow-flying species of Lepidoptera such as pyralids and geometrids frequently approached a trap and were then repelled by the high intensity bulb when they came within a certain range of it. Thus these groups may be consistently under-represented in the catch. There is no doubt, from the abundance of larvae in the area of the campus, and the results of netting along stands of conifers after dusk, that Oeceticus omnivorous is also much more common than the trapping results would suggest. I noted a tendency of many tortricids and geometrids of the genus Xanthorhoe to come to ground several yards from the trap rather than flying right up to it.

Despite all these valid reservations which must be considered when light trapping results are examined, it is interesting to compare the Palmerston North results with other published whole-year trapping records from the southern part of the North Island (Cumber, 1951; Gaskin 1964a, 1964b).

NOCTUIDAE: Melanchra homoscia (Meyr.) was the dominant noctuid in the Wellington catch (Gaskin, 1964a, 1964b), because the Karori hills around the trap were thickly covered with Cassinia leptophylla (Forst.f.) the foodplant of the species (Gaskin, 1967). This species was not recorded at Palmerston North, nor at Paiaka by Cumber. Melanchra mutans was noted as a common species at all three localities. Cumber recorded 250 Persectania steropastis, a species of negligible occurrence at Wellington and Palmerston North. However Paiaka is a flax growing district, and the other two localities are not.

PYRALIDAE: This family accounted for 24% of the Wellington catch (Gaskin, 1964c) and a much greater percentage of the catches at Paiaka and Palmerston North. This difference is the result of the use of tungsten filament bulbs at Wellington, and mercury vapour bulbs having much greater "pulling power" for Lepidoptera at Paiaka and Palmerston North. At all three localities *Crambus flexuosellus* was the most abundant species of all Lepidoptera in the trap catches.

1970]

OTHER FAMILIES: Relatively few other species were caught in significantly large numbers at Wellington or Palmerston North, but Cumber recorded very large numbers of the clover case bearer *Coleophora frischella* (Coleophoridae), and *Opogona omoscopa* and *Erechthias hemiclistra* (Lyonetidae). The latter is known to feed on dead, dry monocotyledenous tissue; for example the flower stalks of *Phormium* and *Cortaderia*. The great prominence of *Leptomeris rubraria* and *Xanthorhoe venipunctata* in the Paiaka catches relative to the other localities is not explicable without more information on the vegetation of the area at the time catches were made.

References

- BELTON, P.; KEMPSTER, R. H. 1963: Some Factors Affecting the Catches of Lepidoptera in Light Traps. Canad. ent. 95: 832–7.
- CUMBER, R. A. 1951: Flight Records of Lepidoptera taken with a Modified Rothamsted Light Trap operated at Paiaka. N.Z. Jl Sci. Technol. B33: 1–8.
- DUGDALE, J. S. 1966a: A New Genus for the New Zealand "Elusive Tortrix" (Lepideptera: Tortricidae: Tortricinae). N.Z. Jl Sci. 9: 391-8.
- —— 1966b: A Revision of New Zealand Schoenotenini and Cnephasiini (Lepidoptera: Tortricidae: Tortricinae). N.Z. Jl Sc., 9: 731–75.
- DUMBLETON, L. J. 1966: Genitalia, Classification and Zoogeography of the New Zealand Hepialidae (Lepidoptera). N.Z. Jl Sci. 9: 920–81.
- GASKIN, D. E. 1964a: Notes on the Species of Lepidoptera taken by Light-trapping at Wellington between November, 1962, and November, 1963. *Rec. Dom. Mus. Wellington*, 4: 305–9.
- ----- 1964b: The Species of Lepidoptera taken by Light-trapping at Wellington between December, 1963, and May, 1964. *Rec. Dom. Mus. Wellington*, 5: 39-43.
- 1964c: Light-trapping for Lepidoptera in Wellington during Two Summer Seasons; 1962–63 and 1963–64. *N.Z. Ent.* 3(3): 28–32.
- ------ 1967: New Zealand Noctuidae (Lepidoptera): Summary of known Host Plants and a bibliography relevant to the biology of the group. *N.Z. Ent. 3* (5): 19–27.
- GLICK, P. A.; HOLLINGWORTH, J. P.; EITEL, W. J. 1956: Further Studies on the Attraction of Pink Bollworm Moths to Ultra-violet and Visible Radiation. J. econ. Ent. 49: 158-61.
- HARDWICK, D. F. 1965: The Corn Earworm Complex. Mem. ent. Soc. Canada 40: 1–246.
- HELSON, G. A. H. 1966: Adult Periodicity of Wiseana spp. (Fam. Hepialidae in New Zealand as Revealed by Light Traps. Sect. V. Eleventh Pacif. Sci. Congr., 1966. Tokyo. Mimeo. 14 pp.
- HUDSON, G. V. 1928: "The Butterflies and Moths of New Zealand". Ferguson and Osborn, Wellington.
- OBRAZTOV, N. S. 1955: Die Gättungen der Palaearktischen Tortricidae, I. Allgemeine Aufteilung der Familie und die Unterfamilien Tortricinae und Sparganothinae. *Tijdschr. Ent.* 98: 147–228.
- STANLEY, J. M. DOMINICK, C. B. 1957: Response of Tobacco and Tomato Horn Worm Moths to Black Light. J. econ. Ent. 51: 78–80.
- VERHEIJEN, F. J. 1960: The Mechanisms of the Trapping Effects of Artificial Light Sources upon Animals. Arch. Neerland. Zool. 13: 1-107.
- WILLIAMS, C. B.; FRENCH, R. A.; HOSNI, M. M. 1955: A Second Experiment on Testing the Relative Efficiency of Insect Traps. *Bull. ent. Res.* 46: 193–204.
- WISE, K. A. J. 1965: Nomenclature of Some Butterfly Species. N.Z. Ent. 3(4): 18-20.